Carbon Dioxide Emissions from the Littoral Zone of a Chinese Reservoir
نویسندگان
چکیده
The continuous increase in the number of reservoirs globally has raised important questions about the environmental impact of their greenhouse gases emissions. In particular, the littoral zone may be a hotspot for production of greenhouse gases. We investigated the spatiotemporal variation of CO2 flux at the littoral zone of a Chinese reservoir along a wet-to-dry transect from permanently flooded land, seasonally flooded land to non-flooded dry land, using the static dark chamber technique. The mean total CO2 emission was 346 mg m−2 h−1 and the rate varied significantly by water levels, months and time of day. The spatiotemporal variation of flux was highly correlated with biomass, temperature and water level. Flooding could play a positive role in carbon balance if water recession occurs at the time when carbon gains associated with plant growth overcomes the carbon loss of ecosystem. The overall carbon balance was analysed using cumulative greenhouse gases fluxes and biomass, bringing the data of the present study alongside previously published, simultaneously measured CH4 and N2O fluxes. For the growing season, 12.8 g C m−2 was absorbed by the littoral zone. Taking CH4 and N2O into the calculation showed that permanently flooded sites were a source of greenhouse gases, rather than a sink. Our study emphasises how water level fluctuation influenced CO2, CH4 and N2O in different ways, which greatly affected the spatiotemporal variation and emission rate of greenhouse gases from the littoral zone.
منابع مشابه
Spatial and Seasonal CH4 Flux in the Littoral Zone of Miyun Reservoir near Beijing: The Effects of Water Level and Its Fluctuation
Wetlands, and especially their littoral zones, are considered to be CH4 emissions hotspots. The recent creation of reservoirs has caused a rapid increase in the area of the world's littoral zones. To investigate the effects of water depth and water level fluctuation on CH4 fluxes, and how these are coupled with vegetation and nutrients, we used static closed chamber and gas chromatography techn...
متن کاملSimulation of methanol synthesis by hydrogenation of carbon dioxide recovered from combustion gases of Fluid Catalytic Cracking Unit of Abadan Refinery
Refineries produce about four percent of the global carbon dioxide emissions, close to one billion tons per year. Globally, the refining sector is the third largest producer of carbon dioxide after the electricity generation and cement industry.This greenhouse gases is a major cause of global warming and climate change and is a serious threat to human health and the environment. One way to redu...
متن کاملInvestigating the Effect of Overflow Effects from Heat Sector of Iran on Greenhouse Gas Emissions; Application of Space Durbin Model
Issues related to environment are one of the most important issues that confront communities in recent decades. Resource scarcity and the necessity of development for Iran and other similar countries requires us to deal with carbon dioxide emissions as a manifestation of environmental crisis. In this study, we assess the relationship between carbon dioxide emissions as a dependent variable wi...
متن کاملEconomic and Environmental Factors Determining the Amount of Carbon Dioxide Emissions in the MENA Countries
Abstract: The gradual warming of the earth and its negative environmental and economic impacts contributed to pay attention to sustainable development considerably. Since climate change is a major cause of greenhouse gas emissions, including CO2, countries are seeking to prevent the rapid growth of emissions to reduce global climate change. Accordingly, and considering the importance of the sub...
متن کاملEffect of Government Size on Environmental Pollution in Iran
Given the importance of the issue and the undeniable role of the environment in the community's life, in this research, it is attempted to test the hypothesis of the relationship between the government size and composition of government expenditure (Current and developmental) on carbon dioxide emissions in Iran during 1971-2016 based on autoregressive distributed lag approach. To better explain...
متن کامل